
Automatic Optimisation of Parallel Linear Algebra
Routines in Systems with Variable Load*

Javier Cuenca1, Domingo Giménez2, José González1, Jack Dongarra3, and Kenneth Roche3

1 Departamento de Ingeniería y Tecnología de Computadores
{javiercm, joseg}@ditec.um.es

2Departamento de Informática y Sistemas Informáticos
domingo@dif.um.es
1,2Universidad de Murcia

30071 Murcia. Spain
3Department of Computer Science

{dongarra, roche}@cs.utk.edu
University of Tennessee

Knoxville, TN 37996, USA

Abstract. In this work an architecture of an automatically tuned linear algebra li-
brary proposed in previous works is extended in order to adapt it to platforms where
both the CPU load and the network traffic vary. During the installation process in a
system, the linear algebra routines will be tuned automatically to the system condi-
tions: hardware characteristics and basic libraries used in the linear algebra routines.
At run-time the parameters that define the system characteristics are adjusted to the
actual load of the platform. The design methodology is analysed with a block LU fac-
torisation. Variants for a sequential and parallel version of this routine on a logical
rectangular mesh of processors are considered. The behaviour of the algorithm is
studied with message-passing, using MPI on a cluster of PCs. The experiments show
that the configurable parameters of the linear algebra routines can be adjusted during
the run-time process despite the variability of the environment.

1 Introduction

In recent years a new technique for the development of efficient software for supercomputers has
been developed. The technique is called AEOS (Automatic Empirical Optimisation of Software)
[19] and relies on the development of software which is automatically adaptable to new com-
puter architectures in such a way that when a new architecture is developed the library automati-
cally adapts itself to the hardware characteristics, thus obtaining highly efficient software for the
new architecture. The method is used to alleviate a serious problem in obtaining efficient soft-
ware, which was traditionally obtained only after a large amount of work by expert program-
mers. Attempts have been made to develop this type of software in different fields: FFT [9],
sparse systems [16] and dense linear algebra [19].

*Partially supported by Comision Interministerial de Ciencia y Tecnología, project TIC2000/1683-C03.

 Partially supported by Fundación Séneca, reference number EE 00558 /CV/01 and PI-34/00788/F5/01.
 Partially developed using the resources of the ICL, University of Tennessee.

Furthermore, the development of automatically tuned software would help to facilitate the ef-
ficient utilisation of the routines by non-expert users, e.g. those normally using linear algebra
routines in the solution of large scientific or engineering problems in supercomputers. This has
prompted the development of techniques to facilitate the efficient use of this type of routines on
homogeneous [6] or distributed [1] systems. Research towards this direction is clearly related to
that in automatic tuning, because some of the techniques used to develop automatically tuned
software can be used to obtain near optimal executions.

We are investigating the development of dense linear algebra software for message-passing
systems. Our approach to tackle the problem has been to identify algorithmic and system pa-
rameters and to analyse the algorithms both theoretically and experimentally in order to deter-
mine the influence of the value of the system parameters in the algorithmic parameters. In that
way, installation routines have been developed to enable the installation (or reinstallation) of
linear algebra routines in a new (or modified) system. The installation routines estimate the
values of the system parameters, and the values of the algorithmic parameters are obtained
automatically at execution time. In the routines we have analysed to date, typical system parame-
ters are the cost of arithmetic operations of level 1, 2 or 3 (k1, k2, k3) and communication parame-
ters (start-up, ts and word-sending time, tw). The algorithmic parameters are the block size b (in
block based algorithms) and parameters defining the logical topology of the process grid or the
data distribution. The results are satisfactory with different methods (Jacobi methods for the
symmetric eigenvalue problem, LU factorisation and Gauss elimination) and different systems
such as distributed and shared memory multiprocessors and clusters of workstations [11].

Since our methodology estimates the parameters’ values obtained during installation, it is
likely that the system state (CPU load, network traffic) at the moment the routines are to be used
will be quite different than at installation time. This may lead to the use of inaccurate parameters
and then to execution times far from the optimum. Therefore, the aim of this work is to extend
our methodology in order to include in the system parameters of the analytical model not only the
static characteristics of the system obtained when the routine is installed, but also its state when
the routine is executed. In this way, the model would be able to make an accurate theoretical
prediction of the execution time even when the load at execution time is very different from that
assumed at installation. This enhanced model constitutes a better tool for selecting the optimum
values of the system parameters in any situation.

One approach which takes into account the system state at execution time involves obtaining
the values of the system parameters at execution time (as is done in GrADS [1], [17]). We pro-
pose to perform a static installation to obtain the optimum values of the algorithmic parameters
with some values of the system parameters (those at installation time) and to refine these initial
values using information of the system parameters obtained at the execution time. In this way,
the overheads incurred would be low when using a tool like the Network Weather Service
(NWS) [15], and the method could be suitable for both large and small problems.

NWS is a tool (software) that provides measurements and predictions of the particular fea-
tures of a system at a given time. The current implementation of NWS supports measuring the
fraction of CPU available for new processes and for the current ones, TCP connection time, end-
to-end TCP network latency, and end-to-end TCP network bandwidth. NWS can be used in a
LAN as well as in a GRID environment. In the former, the overheads introduced are almost
negligible [17].

The rest of the paper is organised as follows: in section 2 the proposed architecture of an
automatically tuned linear algebra library is analysed , in sections 3 and 4 the methodology is
applied to sequential and parallel versions of the block LU factorisation, and in section 5 the
conclusions are summarised and some possible future research is outlined.

2 Methodology for the design of automatically tuned linear algebra
libraries

In this section the architecture of an automatically tuned linear algebra library is analysed. There
are three main steps in the construction and use of the library: design process, installation proc-
ess and run-time process (figure 1). The first two steps were introduced in our previous works
[6], whereas the third is the new contribution of this study. The elements used are the following:
LAR: Linear Algebra Routine of the library we want to build.
MODEL: Analytical Model of the execution time for the LAR as a function of the problem size
(n), the system parameters (SP) and the algorithmic parameters (AP).
SP-Estimators: Estimation Routines of the SP values.
Basic Libraries:
Basic Communication Library: MPI [14], PVM [10], etc.
Basic Linear Algebra Library: reference BLAS [8], machine-specific BLAS, ATLAS [19], etc.
Installation-File: The SP values are obtained using the information (n and AP values) of this
file.
Static-SP-File: This file contains the estimated values of the SP at installation time, when the
SP-Estimators are executed.
Current-SP: Tuned values of the SP at run time.
Optimum-AP: From the MODEL, and with the run time SP values already known, the opti-
mum AP values are obtained.

2.1 Design process

This process is hand-made only once by the LAR-designer. The LAR-designer is in charge of
modelling the LAR, obtaining the MODEL:

),,(nAPSPfTexec = (1)

In previous works [7], the SP values have been considered as system constants, however we

proved that they actually depend not only on the system characteristics but also on the problem
size n and the AP values:

),(nAPfSP = (2)

The LAR-designer also creates the different SP-Estimators. Each SP-Estimator is basically

formed by the LAR kernel which constitutes the dominant performance cost regarding each one
of the SP. The LAR-designer also decides which aspects are considered relevant for determining
the SP values (for example, the data access scheme). When a complete library is being designed
each LAR could have a set of SP-Estimators associated with it, but different routines could have
common basic kernels, and it may be better to develop an installation process common to several
LARs in the library. So far, we have only considered the design of individual installation rou-
tines.

Fig. 1. Methodology for the design of Automatically Tuned Linear Algebra Libraries

LAR

Modelling
the LAR

MODEL

Implementation
of SP-Estimators

SP-Estimators

Estimation
of Static-SP

Static-SP-File

Basic Libraries Installation-File

Current-SP

Dynamic Adjustment
of SP

Optimum-AP

Selection
of Optimum AP

Execution
of LAR

D
E
S
I
G
N

I
N
S
T
A
L
L
A
T
I

O
N

R
U
N
-
T
I

M
E

NWS Information

Call to NWS

2.2 Installation process

The most significant values, n and AP, needed to estimate the SP values are written in the Instal-
lation-File. Next, the appropriate experiments are performed to obtain the SP values. This means
executing the SP-Estimators and generating the Static-SP-File. This file will, therefore, contain
the SP values obtained at installation time (ts-static, tw-static, k3-static, k2-static, k1-static) for the n and AP
values specified in the Installation-File.

This process must be done when the system has a minimum load (close to 100 % of available
CPU in all the nodes and minimum traffic in the interconnection network) in order to obtain SP
values that reflect the static characteristics of the system.

2.3 Run-time process

When the user calls the LAR for a specific problem size n the following steps are carried out:
1.- The NWS is called and it reports:
• the fraction of available CPU (fCPU) .
• the current word sending time (tw-current) for a specific n and AP values (n0, AP0).

Then the fraction of available network is calculated:

),(
),(

00

00

nAPt
nAPt

f
currentw

staticw
network

−

−= (3)

2.- The values of the SP are adjusted, according to the current situation:

CPU

static
current f

nAPk
nAPk

),(),(3
3

−
− = (4)

network

staticw
currentw f

nAPt
nAPt

),(
),(−

− = (5)

3.- Next, the optimum AP are automatically calculated by taking the dynamically updated,

current SP values and the MODEL.
4.-The LAR automatically obtains the AP values to be used in this execution by taking the

values associated with problem sizes close to n from the optimum, calculated AP.
The resulting dynamic MODEL used is the union of the basic static MODEL (formulas 1

and 2) and the dynamic adjustment of the system parameters (formulas 3, 4 and 5).

3 Sequential block LU factorisation

In this section, the way in which the values of the parameters of the MODEL are affected
by the load of the CPU is analysed. The LAR used is a sequential block LU factorisation
following the scheme in [12]. In this case, only the block size (b) is considered as an AP,
and the costs of the arithmetical (floating point) operations at the different levels (k1, k2
and k3) are the SP. The theoretical cost of the routine, which constitutes the MODEL, is:

2

3
3

33
2 nbknkTexec += (6)

The platform considered has been a Pentium III node from the TORC system [18] at

the Innovative Computing Laboratory, The University of Tennessee. This is a heterogene-
ous system of 32 nodes (single and dual processors, Pentiums II, III and 4, AMD Athlon
and Compaq Alpha, with two communication networks: Fast-Ethernet and Myrinet). The
system is used by a large number of researchers who share the processors and the commu-
nication networks which causes the load in the processors and/or the communication net-
work to vary greatly. The characteristics of this system are different to those of the systems
previously used and this leads us to extend our research to heterogeneous and/or load vari-
able systems. The basic linear algebra library used has been ATLAS [19].

The term n3 is obtained from matrix-matrix multiplications of dimensions ci × b by b ×
ci, with b the block size and the ci having values n – b, n – 2b, ..., b. Thus, the SP-
Estimator used for k3 is a matrix-matrix multiplication for different values of n and b.
Experiments performed on different platforms, with different basic libraries and different
values of n and b show the value of k3 depends mainly on b and not on n [6]. Table 1
shows the values of k3 (in microseconds) for different values of b.

Table 1. Estimation of static SP (k3-static) for different block sizes (in µsec)
Block size 16 32 64 128

k3-static 0.0038 0.0033 0.0030 0.0027

The NWS skill cpuMonitor has been used to measure the load of the CPU at execution time.
This tool monitors the fraction of CPU available for newly-started and existing processes. The

different CPU loads have been obtained by executing several images of a sequential application
which is independent of the LU routine.

Table 2. Values of the optimum AP (block size) for different problem sizes and CPU loads
 available CPU

n 100% 70% 40% 30%
512 32 32 64 128

1024 64 64 128 128
1536 64 128 128 128
2048 64 128 128 128
2560 128 128 128 128
3072 128 128 128 128

Table 2 shows the theoretical optimum b for different loads of the CPU, according to the dy-

namic MODEL proposed.
Table 3 shows the basic case, when the LAR is executed with the same CPU load as when

the routine was installed, that is, when the AP values are taken from the first column of table 2
(100 % CPU availability). In this situation, the static MODEL produces a good theoretical esti-
mation of the execution times (SM_the). An accurate choice of the AP is carried out, and ex-
perimental execution times (SM_exp) are very close to the optimum ones (opt_exp).

Table 3. Comparison of the optimum time predicted with a static model (SM_the), the optimum
experimental time (opt_exp) and the experimental time with the parameters provided by the static
model (SM_exp), with 100 % CPU availability

n SM_the opt_exp SM_exp dev
SM_exp

512 0.36 0.33 0.33 0%
1024 2.62 2.28 2.28 0%
1536 8.30 7.20 7.31 2%
2048 18.68 16.60 16.60 0%
2560 35.23 31.68 31.68 0%
3072 59.43 54.25 54.25 0%

Table 4. Comparison of the optimum time predicted with a static model (SM_the), the optimum
time predicted with a dynamic model (DM_the), the optimum experimental time (opt_exp), the
experimental time with the parameters provided by the static model (SM_exp) and the experimental
time with the parameters provided by the dynamic model (DM_exp), for different values of CPU
availability. The results presented were obtained on a single node of the cluster

70% CPU availability

n SM_the DM_the opt_exp SM_exp DM_exp dev
SM_exp

dev
DM_exp

512 0.36 0.49 0.42 0.58 0.58 38% 38%
1024 2.62 3.69 3.83 4.19 3.83 9% 0%
1536 8.30 11.92 10.93 12.09 12.09 11% 11%
2048 18.68 27.63 29.32 32.31 29.32 10% 0%
2560 35.23 52.90 51.17 51.17 51.17 0% 0%
3072 59.43 89.96 87.15 87.15 87.15 0% 0%

30% CPU availability
512 0.36 1.06 0.84 1.32 1.30 57% 57%
1024 2.62 7.95 8.70 8.77 8.70 1% 0%
1536 8.30 25.94 29.71 33.13 31.42 12% 6%
2048 18.68 60.40 64.05 69.95 69.95 9% 0%
2560 35.23 116.72 117.25 117.25 117.25 0% 0%
3072 59.43 200.24 202.48 202.48 202.48 0% 0%

Table 4 shows that, when the CPU load increases, the static MODEL produces unrealistic

theoretical estimations of the execution time (SM_the), which causes the wrong choice of the

AP values. This leads to an experimental execution time (SM_exp) far from the optimum
(exp_opt). On the other hand, the use of the dynamic model leads to more accurate theoretical
estimations (DM_the) and a better choice of AP values is made. Thus, experimental execution
times (DM_exp) are close to the optimum. The differences in the deviations of SM_exp and
DM_exp with respect to the opt_exp have been highlighted. In general, it is more difficult to
obtain accurate predictions for small problem sizes when the system load increases because they
are more sensitive to the variations in the system load.

In order to carry out all these experiments, for each value of the CPU availability and for each
n, the LAR has been executed for representative AP values. The opt_exp is the best time, the
SM_exp is the time obtained with the AP values of the first column of table 2 and the DM_exp
is the time obtained with the AP values of the corresponding column of table 2.

4 Parallel block LU factorisation

In this section, the parallel LAR used is a parallel block LU factorisation. The theoretical arith-
metic and communication execution times, which constitute the static MODEL, are:

nkbnbk
p

cr
p

nkTari 2
22

3

3

3 3
1

3
2

+
+

+=

 (7)

p
dnt

b
ndtT wscom

222
+=

where the AP to be estimated are the block size (b), the number of processors to be used (p) and
the dimensions of the logical topology used: a 2D-mesh (p=r×c and d=max(r,c)). Matrices are
distributed in a 2d, block-cyclic fashion (ScaLAPACK style [2]).

4.1 Variable network traffic

This subsection studies how the traffic in the interconnection network affects the parameter
values. The arithmetic SP are those obtained in the sequential case, and the communication SP
are obtained using communication SP-Estimators with the same communications scheme used
in the LAR.

Table 5. Values (in µsec) of tw, at installation time, for the parallel routine block based LU, for
different message sizes. Runs were conducted on4 Pentium III nodes with Fast-Ethernet

Message size (bytes) 32768 262144 1048576 2097152
tw_ static 0.7000 0.6900 0.6800 0.6750

Experiments have been carried out on four Pentium III nodes of the TORC system, using

only a processor per node and a Fast-Ethernet as interconnection network. Table 5 shows the
values of tw (in microseconds) for different message sizes at installation time.

The NWS skill tcpMessageMonitor has been used in order to measure the network traffic at
execution time. This skill monitors the TCP bandwidth and latency between each pair of a set of
machines. The variations in the traffic of the network have been obtained by executing different
images of a parallel program that basically performs communications between the nodes used in

these experiments. In table 6, the theoretical optimum b is shown according to the proposed
dynamic MODEL for different network traffics, i.e., for different word-sending times.

Table 6. Values of the optimum AP (block size) for different problem sizes and network traffic.
Runs were conducted on 4 Pentium III nodes with Fast-Ethernet

 tw-current
n 0.7 µµsec 1.5 µµsec 4.0 µµsec 7.0 µµsec

512 32 32 32 32
1024 32 64 64 64
1536 64 64 64 64
2048 64 64 64 128
2560 64 64 128 128
3072 64 128 128 128

Table 7. Comparison of the optimum time predicted with a static model (SM_the), the optimum
experimental time (opt_exp), and the experimental time with the parameters provided by the static
model (SM_exp)tw = 0.7 µsec. Runs were conducted on 4 Pentium III nodes with Fast-Ethernet

n SM_the opt_exp SM_exp dev
SM_exp

512 0.30 0.25 0.25 0%
1024 1.47 1.36 1.36 0%
1536 3.86 3.22 3.22 0%
2048 7.85 6.76 6.76 0%
2560 13.81 11.81 11.81 0%
3072 21.90 19.28 19.41 1%

Table 8. Comparison of the optimum time predicted with a static model (SM_the), the optimum
time predicted with a dynamic model (DM_the), the optimum experimental time (opt_exp), the
experimental time with the parameters provided by the static model (SM_exp), and the
experimental time with the parameters provided by the dynamic model (DM_exp) -with different
values of tw. Runs were conducted on 4 Pentium III nodes with Fast-Ethernet

tw-current =4.0 µµsec

n SM_the DM_the opt_exp SM_exp DM_exp dev
SM_exp

dev
DM_exp

512 0.30 1.16 0.43 0.43 0.43 0% 0%
1024 1.47 4.90 3.92 3.92 4.02 0% 3%
1536 3.86 11.55 11.27 11.27 11.27 0% 0%
2048 7.85 21.48 21.40 21.40 21.40 0% 0%
2560 13.81 34.96 36.48 38.81 36.48 6% 0%
3072 21.90 52.20 59.70 62.91 59.70 5% 0%

tw-current =7.0 µµsec
512 0.30 1.95 0.73 2.22 2.22 204% 204%
1024 1.47 8.02 5.49 6.58 6.59 20% 20%
1536 3.86 18.55 17.01 17.19 17.19 1% 1%
2048 7.85 33.87 38.04 39.30 38.04 3% 0%
2560 13.81 54.15 64.33 66.66 64.33 4% 0%
3072 21.90 79.75 87.98 98.54 87.98 12% 0%

Table 7 shows the basic case, when the execution of the routine is run with similar network

traffic to when the routine was installed, i. e., with the AP values of the first column of table 6.
In this situation, the static MODEL produces a good theoretical estimation of the execution times
(SM_the). An accurate choice of the AP values is made and experimental execution times
(SM_exp) are close to the optimum (opt_exp).

As in the sequential case, in Table 8 we can observe that, when the network traffic increases,
the static MODEL produces incorrect theoretical estimations of the execution time (SM_the),
which causes a wrong choice of the AP values. Thus, an experimental execution time (SM_exp)
which is far from the optimum (exp_opt) is observed. On the other hand, with the dynamic

MODEL, the theoretical estimations (DM_the) are more accurate, which leads to a better choice
of the AP values.

So far, the viability of the dynamic MODEL has been shown, separately, for variations of
CPU availability (previous section) and for variations in the traffic of the interconnection net-
work (this subsection). In the next subsection a combination of both these ideas is shown.

4.2 Variable network traffic and CPU availability

Experiments have been carried out on four and eight Pentium III nodes, using only one processor
per node, of the TORC system. The interconnection network used has been Fast-Ethernet.

The NWS skills cpuMonitor and tcpMessageMonitor have been used. The different CPU
loads and the variations in the network traffic have been obtained by executing different images
of a parallel program, which performs arithmetic calculations and communications between the
nodes used in these experiments.

Table 9. Values of the optimum AP (block size) for different problem sizes and platform loads.
Runs were conducted on 4 Pentium III nodes with Fast-Ethernet

 % available CPU / tw- current

n
100%
 0.7µµs

70%
1.5µµs

35%
 7.0 µµs

512 32 32 64
1024 32 64 128
1536 64 64 128
2048 64 128 128
2560 64 128 128
3072 64 128 128

Table 10. Values of the optimum AP (block size) for different problem sizes and platform loads.
Runs were conducted on 4 Pentium III nodes with Fast-Ethernet

 % available CPU / tw- current

n
100%
 0.7µµs

70%
2.0µµs

60%
 5.5 µµs

1024 32 64 64
2048 64 64 128
3072 64 128 128
4096 128 128 128

The theoretical optimum b is shown in table 9 for 4 nodes, and in table 10 for 8 nodes. The

results follow from the dynamic MODEL proposed for different loads of the parallel platform
(different CPU loads and network traffic).

Table 11. Comparison of the optimum time predicted with a static model (SM_the), the optimum
experimental time (opt_exp), and the experimental time with the parameters provided by the static
model (SM_exp) -with tw = 0.7 µsec and available CPU =100%. Runs were conducted on 8 Pentium
III nodes with Fast-Ethernet

n SM_the opt_exp SM_exp dev
SM_exp

1024 1.10 0.93 0.99 6%
2048 5.41 4.98 4.98 0%
3072 14.38 13.81 13.81 0%
4096 29.43 27.65 29.31 6%

Table 12. Comparison of the optimum time predicted with a static model (SM_the), the optimum
time predicted with a dynamic model (DM_the), the optimum experimental time (opt_exp), the
experimental time with the parameters provided by the static model (SM_exp), and the
experimental time with the parameters provided by the dynamic model (DM_exp) -with different
values of CPU availability and tw. Runs were conducted on 4 Pentium III nodes with Fast-Ethernet

70% of CPU availability
tw-current =1.5 µµsec

n SM_the DM_the opt_exp SM_exp DM_exp dev
SM_exp

dev
DM_exp

512 0.30 0.54 0.46 2.22 2.22 383% 383%
1024 1.47 2.51 4.98 5.35 4.98 7% 0%
1536 3.86 6.45 8.71 8.71 8.71 0% 0%
2048 7.85 12.79 16.70 17.01 16.70 2% 0%
2560 13.81 21.90 24.84 26.30 24.84 6% 0%
3072 21.90 34.32 39.24 39.24 39.24 0% 0%

35% of CPU availability
tw-current =7.0 µµsec

512 0.30 2.05 1.70 7.00 6.00 312% 253%
1024 1.47 8.89 10.66 15.49 10.66 45% 0%
1536 3.86 21.36 24.00 27.45 24.00 14% 0%
2048 7.85 40.38 40.47 41.69 40.47 3% 0%
2560 13.81 66.87 64.17 67.36 64.17 5% 0%
3072 21.90 101.73 92.11 92.11 92.11 0% 0%

Table 13. Comparison of the optimum time predicted with a static model (SM_the), the optimum
time predicted with a dynamic model (DM_the), the optimum experimental time (opt_exp), the
experimental time with the parameters provided by the static model (SM_exp), and the
experimental time with the parameters provided by the dynamic model (DM_exp) -with different
values of CPU availability and tw. Runs were conducted on 8 Pentium III nodes with Fast-Ethernet

70% of CPU availability
tw-current =2.0 µµsec

n SM_the DM_the opt_exp SM_exp DM_exp dev
SM_exp

dev
DM_exp

1024 1.10 2.62 3.03 3.10 3.03 2% 0%
2048 5.41 11.85 12.31 13.04 13.04 6% 6%
3072 14.38 29.56 29.92 29.92 30.63 0% 2%
4096 29.43 57.34 60.01 60.01 60.01 0% 0%

60% of CPU availability
tw-current =5.5 µµsec

1024 1.10 6.32 9.36 10.17 9.99 9% 7%
2048 5.41 26.73 25.30 25.34 25.30 0% 0%
3072 14.38 63.11 56.42 58.07 56.42 3% 0%
4096 29.43 117.48 108.34 112.12 112.12 3% 3%

In table 7, for 4 nodes, and in table 11, for 8 nodes, the basic cases are shown with the mini-

mum load in the platform. A good choice of AP values is made with the static MODEL. The
experimental execution times (SM_exp) are close to the optimum (opt_exp).

When the platform load increases, the static MODEL gives worse results, as can be seen in
table 12 for 4 nodes, and in the table 13 for 8 nodes. As in the two previous studies, when the
load increases, with the dynamic MODEL the theoretical estimations (DM_the) improve with
respect to the static MODEL. A better choice of AP values is made and the experimental execu-
tion times (DM_exp) are close to the optimum ones (opt_exp).

In this section, the viability of the proposed methodology for different parallel platform loads
has been shown. Now, it would be convenient to study cases of heterogeneous load, where some
of the system nodes have more load than others at the moment of the execution. An introduction
to this study is given in the next subsection.

4.3 Variable and heterogeneous system load

This section looks at the situation when the platform load is not distributed homogeneously,
rather the more common case where there are some nodes with heavier loads than others. In this
situation, and with a routine with a homogeneous distribution of the work (like the parallel block
LU), the execution rate is set by the processors with the worst calculation and communication
features. The values of the system load (CPU availability and word sending time) will
correspond to the processor with the largest load in order to apply the dynamic adjustment of the
model at execution time.

Table 14. Comparison of the optimum time predicted with a static model (SM_the), the optimum
time predicted with a dynamic model (DM_the), the optimum experimental time (opt_exp), the
experimental time with the parameters provided by the static model (SM_exp), and the
experimental time with the parameters provided by the dynamic model (DM_exp).One of the nodes
has different values for tw and CPU availability . The rest of the system has tw = 0.7 µsec and CPU
availability =100%

One node: 65% of CPU availability
tw-current = 3.0 µµsec

n SM_the DM_the opt_exp SM_exp DM_exp dev
SM_exp

dev
DM_exp

512 0.30 0.96 0.78 1.02 0.94 31% 21%
1024 1.47 4.13 3.57 4.60 3.57 29% 0%
1536 3.86 10.13 10.08 10.08 10.08 0% 0%
2048 7.85 19.33 22.40 22.40 22.67 0% 1%
2560 13.81 32.25 37.74 37.93 37.74 1% 0%
3072 21.90 49.39 61.71 61.71 61.71 0% 0%

One node: 30% of CPU availability
tw-current = 3.5 µµsec

512 0.30 1.15 0.96 2.50 1.81 160% 89%
1024 1.47 5.27 8.02 9.46 9.46 18% 0%
1536 3.86 13.25 19.04 20.52 20.52 8% 0%
2048 7.85 26.01 31.91 37.59 37.59 18% 0%
2560 13.81 44.48 54.14 58.33 58.33 8% 0%
3072 21.90 69.59 58.80 58.80 58.80 0% 0%

In Table 14 the results for 4 nodes are shown (the basic case of the static situation is shown

in Table 7). Only one of the nodes has been overloaded by executing several images of an
application which is independent of the LU routine. We can observe promising results for the
dynamic MODEL, with near optimum experimental execution times.

5 Conclusions and future work

The use of the proposed methodology is viable in systems where the load is stable or vari-
able. In the case of variable load, the use of software like NWS is suitable for the adjustment of
the system parameters’ values obtained at installation time. The obtained model is better suited
to the state of the system at execution time. How the system load at execution time affects the
system parameters has been reflected by a linear approach. Future work will include a deeper
study of a possible non-linear approach that produces a better adjustment. The heterogeneous
load case offers many more possibilities than the one studied. It would be interesting to continue
along these lines, for example, considering ideas to develop heterogeneous algorithms [3, 4, 13].

References

[1] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-
Crummey, D. Reed, L. Torczon, and R. Wolski, “The GrADS Project: Software for High-Level Grid Application Develop-
ment”, Rice University, Houston, Texas, 2001.

[2] L. S. Blackford, J. Choi, A. Clearly, E. D’Azavedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.
Stanley, D. Walker, and R. C. Whaley, “ScaLAPACK Users’ Guide”, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1997.

[3] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, F. Vivien, “Algorithmic issues on heterogeneous computing platforms”, Parallel
Processing Letters, 9(2):197-213, 1999.

[4] V. Boudet, A. Petitet, F. Rastello, Y. Robert, “Data Allocation Strategies for Dense Linear Algebra Kernels on Heterogeneous
Two-dimensional Grids”,IASTED Parallel and Distributed Computing and Systems, 1999.

[5] J. Cuenca, D. Giménez, and J. González, “Modeling the Behaviour of Linear Algebra Algorithms with Message-Passing”,
proceedings of the Euromicro Workshop on Parallel and Distributed Processing, Mantova, Italy, February, 2001, pp. 282-289.

[6] J. Cuenca, D. Giménez, and J. González, “Towards the Design of an Automatically tuned Linear Algebra Library”, proceedings
of the Euromicro Workshop on Parallel and Distributed Processing, Gran Canaria Island, Spain, January, 2002.

[7] K. Dackland, and B. Kågström, “An Hierarchical Approach for Performance Analysis of ScaLAPACK-based Routines Using the
Distributed Linear Algebra Machine”, in Wasniewski et. al., editor, proceedings of Workshop on Applied Parallel Computing in
Industrial Computation and Optimization (PARA96), Lecture Notes in Computer Science, Springer Verlag, Lyngby, Denmark,
1996, pp. 187-195.

[8] J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, “A set of Level 3 Basic Linear Algebra Subprogram”, ACM Trans.
Math. Soft, 14, 1988, pp. 1-17.

[9] M. Frigo. “FFTW: An Adaptative Software Architecture for the FFT”, proceedings of the ICASSP Conference, volume 3, 1998.
[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM: Parallel Virtual Machine. A Users’ Guide

and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, Massachusetts, 1994.
[11] D. Giménez, J. Cuenca, and J. González, “Automatic parameterisation of parallel lineal algebra routines”, Algèbre Linéaire et

Arithmétique: Calcul Numérique, Symbolique et Parallèle, Rabat, Morocco, May, 2001, pp. 63-81.
[12] G. Golub, and C. Van Loan, Matrix Computations, John Hopkins Press, 2nd edition, 1989.
[13] A.Kalinov, A.Lastovetsky, "Heterogeneous Distribution of Computations While Solving Linear Algebra Problems on Networks

of Heterogeneous Computers", Journal of Parallel and Distributed Computing, 61, 4, 2001, pp.520-535.
[14] Message Passing Interface Forum. Web page: www.mpi-forum.org
[15] Network Weather Service. Web page: nws.npaci.edu/NWS.
[16] J. Ostergaard, “OptimQR, A Software-package to create near-optimal solvers for sparse systems of linear equations”. Web page:

www.ostenfeld.dk/~jakob/OptimQR/
[17] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche,S. Vadhiyar, “Numerical Libraries And The Grid”,Computer

Science Department, University of Tennessee, ut-cs-01-460. 2001.
[18] TORC. Web page: icl.cs.utk.edu/projects/torc
[19] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimizations of software and the ATLAS project”, Parallel

Computing, 27 (1-2), 2001, pp. 3-35.

